Continuous Injective Function With Compact Image

Abstract

A quantum injective frame is a frame that can be used to distinguish density operators (states) from their frame measurements, and the frame quantum detection problem asks to characterize all such frames. This problem was recently settled in Botelho-Andrade et al. (Springer Proc Math Stat 255:337–352, 2017) and Botelho-Andrade et al. (J Fourier Anal Appl 25:2268–2323, 2019) mainly for finite or infinite but discrete frames. In this paper, we consider the continuous frame version of the quantum detection problem. Instead of using the frame element itself, we use discrete representations of continuous frames to obtain several versions of characterizations for quantum injective continuous frames. With the help of these characterizations, we also examine the issues involving constructions and stability of continuous quantum injective frames. In particular, we show that injective continuous frames are stable for finite-dimensional Hilbert spaces but unstable for infinite-dimensional cases.

References

  1. Alaifari, R., Grohs, P.: Phase retrieval in the general setting of continuous frames for Banach spaces. SIAM. J. Math. Anal. 49, 1895–1911 (2017)

    MathSciNet  Article  Google Scholar

  2. Ali, S.T., Antoine, J.P., Gazeau, J.P.: Coherent States, Wavelets, and Their Generalizations. Springer, New York (2000)

    Book  Google Scholar

  3. Amiri, Z., Kamyabi-Gol, R.A.: Distance between continuous frames in Hilbert space. J. Korean. Math. Soc. 54, 215–225 (2017)

    MathSciNet  Article  Google Scholar

  4. Askari-Hemmat, A., Dehghan, M., Radjabalipour, M.: Generalized frames and their redundancy. Proc. Am. Math. Soc. 129, 1143–1147 (2001)

    MathSciNet  Article  Google Scholar

  5. Balan, R.: Equivalence relations and distances between Hilbert frames. Proc. Am. Math. Soc. 127, 2353–2366 (1999)

    MathSciNet  Article  Google Scholar

  6. Bemrose, T., Casazza, P. G., Cheng, D., Haas, J., Van Nguyen, H.: Computing the distance between frames and between subspaces of a Hilbert space. In: Frames and Other Bases in Abstract and Function Spaces, pp. 81–99. Birkhäuser, Cham (2017)

  7. Botelho-Andrade, S., Casazza, P.G., Cheng, D., Haas, J., Tran, T.T.: The quantum detection problem: a survey. Springer Proc. Math. Stat. 255, 337–352 (2017)

    MathSciNet  MATH  Google Scholar

  8. Botelho-Andrade, S., Casazza, P.G., Cheng, D., Tran, T.T.: The solution to the frame quantum detection problem. J. Fourier. Anal. Appl. 25, 2268–2323 (2019)

    MathSciNet  Article  Google Scholar

  9. Busch, P., Lahti, P., Pellonpää, J.P., Ylinen, K.: Quantum Measurement. Springer, Berlin (2016)

    Book  Google Scholar

  10. Casazza, P.G., Lynch, R.G.: A brief introduction to Hilbert space frame theory and its applications. In: Finite Frame Theory, A Complete Introduction to Overcompleteness, AMS Short Course: Joint Mathematics Meetings, San Antonio (2016). arXiv:1509.07347

  11. Casazza, P.G., Kutyniok, G.: Finite Frames: Theory and Applications. Birkhauser, Boston (2012)

    MATH  Google Scholar

  12. Casazza, P.G., Leon, M.: Existence and construction of finite frames with a given frame operator. Int. J. Pure Appl. Math. 63, 149–157 (2010)

    MathSciNet  MATH  Google Scholar

  13. Christensen, O.: An Introduction to Frames and Riesz Bases, 2nd edn. Appl. Numer. Harm. Anal. Birkhauser, Springer (2016)

  14. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)

    MathSciNet  Article  Google Scholar

  15. Fornasier, M., Rauhut, H.: Continuous frames, function spaces, and the discretization problem. J. Fourier. Anal. Appl. 11, 245–287 (2005)

    MathSciNet  Article  Google Scholar

  16. Freeman, D., Speegle, D.: The discretization problem for continuous frames. Adv. Math. 345, 784–813 (2019)

    MathSciNet  Article  Google Scholar

  17. Gabardo, J.P., Han, D.: Frames associated with measurable spaces. Adv. Comput. Math. 18, 127–147 (2003)

    MathSciNet  Article  Google Scholar

  18. Han, D., Kornelson, K., Larson, D., Weber, E.: Frames for undergraduates, vol. 40. Amer. Math. Soc. (2007)

  19. Han, D., Larson, D., Liu, B., Liu, R.: Operator-Valued Measures, Dilations, and the Theory of Frames, vol. 229, no. 1075. Mem. Amer. Math. Soc. (2014)

  20. Li, F., Li, P., Han, D.: Continuous framings for Banach spaces. J. Funct. Anal. 271, 992–1021 (2016)

    MathSciNet  Article  Google Scholar

  21. McLaren, D., Plosker, S., Ramsey, C.: On operator valued measures (2017). arXiv:1801.00331

  22. Medlock, C., Oppenheim, A., Chuang, I., Ding, Q.: Operating characteristics for binary hypothesis testing in quantum systems. In: 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1136–1145. IEEE (2019)

  23. Moran, B., Howard, S., Cochran, D.: Positive-operator-valued measures: a general setting for frames. In: Excursions in Harmonic Analysis, vol. 2. Birkhauser, Boston (2013)

  24. Paris, M., Rehacek, J. (eds.): Quantum state estimation, vol. 649. Springer Science and Business Media (2004)

  25. Paulsen, V.: Completely Bounded Maps and Operator Algebras. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar

  26. Rahimi, A., Najati, A., Dehghan, Y.N.: Continuous frame in Hilbert spaces. Methods Funct. Anal. Topol. 12, 170–182 (2006)

    MathSciNet  MATH  Google Scholar

  27. Waldron, S.F.D.: Continuous tight frames for finite dimensional spaces. In: An Introduction to Finite Tight Frames. Appl. Numer. Harm. Anal. Birkhauser, New York (2018)

  28. Zhu, K.: Operator Theory in Function Spaces. Amer. Math. Soc, Providence (2007)

    Book  Google Scholar

Download references

Acknowledgements

The authors would like to thank the referee for carefully reading the manuscript and providing many helpful comments and suggestions that help improve the quality of its presentation. Deguang Han is partially supported by NSF DMS-1712602, and Rui Liu is supported by the National Science Foundation of China (11671214, 11971348), "the Hundred Young Academia Leaders Program of Nankai University" (91923104, 91823003, 63174012), and "the Fundamental Research Funds for the Central Universities" (63191503, 63171225).

Author information

Authors and Affiliations

Corresponding author

Correspondence to Rui Liu.

Additional information

Communicated by Joseph Ball.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, D., Hu, Q. & Liu, R. Injective continuous frames and quantum detections. Banach J. Math. Anal. 15, 12 (2021). https://doi.org/10.1007/s43037-020-00086-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI : https://doi.org/10.1007/s43037-020-00086-7

Keywords

  • Quantum detection
  • Quantum injectivity
  • Continuous frame
  • Positive operator-valued measure

Mathematics Subject Classification

  • 42C15
  • 46L10
  • 47A05
  • 42C99
  • 46C10
  • 47B38

montaguewhosent.blogspot.com

Source: https://link.springer.com/article/10.1007/s43037-020-00086-7

0 Response to "Continuous Injective Function With Compact Image"

Postar um comentário

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel